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the first 16 numbers generated by this process. An asterisk marks each integer 
whose digits represent a required permutation. The other integers were rejected 
because of the occurrence of repeated digits. 

Sequence Integer Sequence Integer 
1 0123* 9 0303 
2 0132* 10 0312* 
3 0201 11 0321* 
4 0210 12 0330 
5 0213* 13 0333 
6 0222 14 1002 
7 0231* 15 1011 
8 0300 16 1020 

4. Adaptation to a Computer. In a computer such as the IBM 7090 where con- 
vert instructions are available it is easy to do radix k arithmetic. Otherwise one 
could simulate the process by adding 9 digit-wise and testing the resulting sum for 
having unique digits each one of which is one of the original k digits. 
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Multiple Quadrature with Central Differences 
on One Line 
By Herbert E. Salzer 

Abstract. The coefficients A2'm in the n-fold quadrature formulas for the stepwise 
integration of (1) y( = f(x, y, y', **, y(f-l)), at intervals of h, namely, for n 
even, (2) A8yo = hn Z,mn=i (1 + A2m&m)fO + ***, for n odd, (3) Yo = h Em 
(1 + A mn52m)fo + ***, are tabulated exactly for n = 1 ( 1) 6, m-1 ( 1) 10. They 
were calculated from the well-known symbolic formulas (4) any = (a/D)nf, (5) 

2 44 8 

( n/) ) and(6)y= (1 + 62a 1 + a a a 
(SID)' = (Sh/2 sinh-'(8/2)) and (6) m = (1+a/4)" = 1 - 128+ - 
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568 

32768 + For calculating y(r) replace n by n - r in (2) and (3). Use of (2) 

and (3) avoids the solution of (1) by simultaneous lower-order systems for n > 1, 
as well as mid-interval tabular arguments, requires only even-order differences, on 
a single line, and provides great accuracy due to rapid decrease of A2m as m in- 
creases. However, the integration may be slowed down by the need to estimate 
and refine iteratively the later values of y, yt, *.., y (n-1) required in 62mfo. Refer- 
ence to earlier collected formulas of Legendre, Oppolzer, Thiele, Lindow, Salzer, 
Milne and Buckingham, reveals that Thiele and Buckingham come closest to (2), 
(3), as their works contain schemes that involve just tabular arguments through- 
out. For n odd, they give formulas that are based upon the series in 52m for 
(1/,t) (3/D)n instead of ,u(5/D)n as in the present arrangement. 

1. Purpose and Scope of Tabulated Formulas. Given a differential equation 

(1) 8y f(X, Y, Y' .y(X ) 

and a sufficient number of starting values at intervals of h, there are very convenient 
numerical integration formulas for obtaining either anyo, for n even, or MA3nyO, for 
n odd, in terms of just the even-order central differences of f _ f(x, y, y ** y 
at x = xo, denoted by &mfo. This article tabulates the exact values of A2m , the 
coefficients of 62mfom for n = 1(1)6, m = 1(1)10, in the following numerical inte- 
gration formulas: 

10 

(2) nyo = hn E (1 + A mn52m)fo + * -, for n even, and 
m=1 

10 

(3) Aoyo = h' E (1 + A2m&m)f0 + , for n odd. 
m=1 

The computation of Anm was based upon the symbolic form of (1), or Dy =n 

from which 

(4) any = (a/D) f. 

The well-known operational formula, 

(5) (a/D)n = (bh/2 sinh' ( I/2))", 

was used to obtain the coefficients of 62m in the series for (6/D)n. For even n, this 
yielded (2). For odd n, (5) produces integration formulas that express mid-interval 
values of y in terms of tabular values of f. To obtain (3), which involves tabular 
values of both y and f, we multiply (5) by ,u, giving ,u, on the left side, the numerical 
interpretation of a mean central operator I(E112 + E7112) and considering I, on 

the right side, a symbolic even function of 3 according to 
2 4 6 8 

(6) =(1 + a /4)1/2 =il + -6 + - 55 + 8 128 102-432768 

Integration of (1) also requires formulas for the stepwise determination of the 
derivatives y(r) r = 1(1)n-1. By noting that Dn ry(r) = f, we can still employ 
(2) and (3), as well as the same quantities 32mfo , merely replacing n by n - r. 
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In the use of (2) and (3) we avoid the widespread practice of breaking up a 
higher-order equation into a simultaneous first-order system where each equation 
requires its own set of differences. Also there is no occurrence of formulas involving 
mid-interval arguments. Among the attractive features of this scheme is the em- 
ployment of just alternate even-order differences that are on a single line. Besides 
the concise and economical appearance of (2), (3), the rapid rate of decrease of 
A'm with increasing m is seen to provide high accuracy. 

On the dampening side, the user is reminded that the higher-order central differ- 
ences of f(x, y, y', *.*, y(fl)) in (2) and (3) involve later values of y, y', * , y(n 
that must be estimated at first, probably by some kind of extrapolation. Then (2) 
and (3) might be used in some iterative refining scheme, the details depending 
upon the particular functional form of f(x, y, y', * * *, y(fn-l)), the nature of the prob- 
lem, and the desired accuracy (all of which is a vast subject in itself). 

2. Comparison with Earlier Work. The chief novelty in the present arrangement 
is the systematic use of the A-series in terms of a2m to obtain (3) for any odd n (see 
also Milne below). Two other authors (Thiele, Buckingham), by employing the 
series for l/, in terms of 62m, give formulas for odd n that are closely related to (3), 
requiring just tabular arguments and avoiding the introduction of mid-interval 
arguments (as is done by Legendre, Oppolzer, Lindow). Presented chronologically, 
there is the following earlier work. 

Legendre [1] gives the symbolic formula for the (3/D) series in 6&7t and the 
first few coefficients up to n = 6. 

Oppolzer [2] gives the exact coefficients for (a/D) and (1/D)2 up to P2J. His 
(a/D) coefficients checked with those in Salzer [5]. His (3/D)2 coefficients checked 
with A2m here, except for his coefficient Q2i4 (= AL6) not in lowest terms by a 
factor of 9. 

Thiele [3] gives the exact values of the first five coefficients for D-n and (I/,u)D-, 
which is the same as (6/D)" in terms of 62m and ,tl2m Up to m = 5, for n = 1(1)5. 

Lindow [4], who gives some central difference formulas up to triple quadrature, 
also gives the exact values of A2m, for m = 1(1)7. 

Salzer [5] tabulates the coefficients of 6/D, exactly through 520 then 18D through 
50 

Milne [6] happens to give 2A'm, m = 1(1)5, in the first of a series of formulas 
j. o+rh 

for J f(x)dx, r = 1(1)5, in terms of 62mfo. 

Salzer [7] gives the coefficients of 602m and 6,2m obtained by k-fold quadrature of 
Everett's formula; for k = 2, exactly up to m = 10, then 16D up to m = 24; for 
k = 3(1)6, exactly for m 0 and 8S for mn = 1(1)10. These differ from the other 
coefficients in that they occupy two lines for central differences instead of one. They 
are mentioned here because of their similar purpose and the large extent to which 
they have been tabulated. 

Buckingham [8] gives the coefficients of (5/D) and (1/,n) (/D) , n = 1(1)4, 
through 68. As in Thiele [3], this includes an integration scheme involving just tabu- 
lar arguments for every n. Thus, by expressing (a/D) n for odd n as { (1/,u) (a/D) n}/.L 

and choosing xo + h/2 for the argument, Buckingham obtains odd-order central 
differences of the integral, at mid-intervals, in terms of mean central even-order 
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differences, also at mid-intervals, so that both members involve y and f for just 
tabular arguments. However, it appears to the author that for n odd there is less 
total computation involved in using (3) for ,q(a/D) n , where the slight extra work 
of finding /IAnyo instead of anyl/2 is more than compensated for by not having to 
average all the quantities a2mfo and a2mf,, as is done in the Buckingham-Thiele pro- 
cedure which uses (1/,) (a/D)n with the mean central differences AT62mfl/2. 

3. Integration Formulas for y(n = f(x, y, y/, y(n-1)) 

I + 52 a_4 56 23 8 263 10 
n=l: Y? __ +a=hK1-~6 18o0 1512 2 26800 149 68800 

1 33787 a" + 1 57009 a14 

4 08648 24000 24 51889 44000 

162 15071 516 + 26894 53969 18 

12504 63614 40000 99 78699 64291 20000 

_ 2 68931 18531 a20 A 

4704 24411 73728 00000 a 

n= 2: 52Yo h 2 1 
+ 

2 a a4 + 31 66 _ 289 68 
317 

a10 
*=2 ? \ 12 240 60480 36 28800 228 09600 

68 03477 +12 32 03699 a14 
261 53487 36000 627 68369 66400 

736 91749 a16+ 22 03877 95651 a18 
71137 48561 92000 10218 18843 43418 88000 

_ 15447 34732 56043 20 f 
337 20021 83332 82304 00000 / 

-3 3 h3 (1 + 52 + a4 + a6 8 661 610 
U. bI Yo k\-i~~ 2140 60480 -57600 1596 67200 

_ 4 65967 a12 + 3 96079 a'4 
52 30697 47200 209 22789 88800 

95 95529 16+ 1 78574 25881 a18 
23712 49520 64000 2043 63768 68683 77600 

2143 27306 64071 a20f 
112 40007 27777 60768 00000 

n-4: a4 -h4(1~ a 6 _ 4 a 6_ 41 a8+ 491 a1 
?1o G6 720 3024 7 25760 479 00160 

3 41749 19 + 50971 14 

17 43565 82400 13 07674 36800 

1704 03199 0 6 a + 55-137 8923 
' 1:3412 45685 76000 5109 09421 71709 44000 
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1721 38184 48999 20f 
48 17145 97618 97472 00000 0) fo 

/ a2 a4 6 1110 
n =5: Ayo= h + 3 4 + 8 6048+ 7 25760 7 98336 

+ 13283 612 +5827 a14 
17 43565 82400 104 61394 94400 

9 66067 a16? 4757 70541 18 

23712 49520 64000 364 93530 12264 96000 

24 19396 16497 20) 

6 88163 71088 42496 00000 fo 
/ 

1 
2 

a4 a6 a8 310 
n=6: Yo=hi1- + + +a n == 1 4 120 30240 57600 76 03200 

27257 612 + 11581 614 
3 11351 04000 6 22702 08000 

15 54079 16 1 25353 54591 18 _ ~~~~a + a 

3908 65305 60000 1459 74120 49059 84000 

150 48397 12643 20f 
8 02857 66269 82912 00000 
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